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Introduction

Let r and ` be given fixed integers such that 2 6 ` 6 r − 1. A
hypergraph H on vertex set [n] is an r -uniform hypergraph
(r -graph for short) if each edge is a set of r vertices.

An r -graph is said to be linear if every pair of distinct edges
intersect in at most one vertex.

Linear hypergraphs are the subject of much study, and one
reason is that they are a natural generalization of simple
graphs.

An r -graph is called a partial Steiner (n, r , `)-system, if every
subset of size ` (`-set for short) lies in at most one edge of H.

In particular, partial Steiner (n, r , 2)-systems are linear
hypergraphs.

Let Hr (n,m) denote the set of r -graphs on the vertex set [n]
with m edges, and let Lr (n,m) denote the set of all linear
hypergraphs in Hr (n,m).



Introduction

The uniform hypergraph process Hr (n,m) is a Markov process
with time running through the set {0, 1, · · · ,

(n
r

)
}. It is the

typical random graph process G(n,m) introduced by Erdős
and Rényi when r = 2.

Similarly, the partial Steiner (n, r , `)-system process begins
with no edges on vertex set [n] at time 0, all r -sets arrive one
by one according to a uniformly chosen random permutation,
and each one is added if and only if it does not overlap any of
the previously added edges in ` or more vertices.

In particular, it is the linear hypergraph process when ` = 2.

Let L`
r (n,m) with 2 6 ` 6 r − 1 denote the m-th stage of the

uniform partial Steiner (n, r , `)-system process, and L2
r (n,m)

is also denoted as Lr (n,m).



Introduction

The hitting time of connectivity is a classic problem which has
been extensively studied in the theory of random graph
processes.

Bollobás and Thomason in 1985 proved that, with probability
approaching to 1 when n→∞ (w.h.p. for short), m = n

2 log n
is a sharp threshold of connectivity for G(n,m) and the very
edge which links the last isolated vertex with another vertex
makes the graph connected.

Poole in 2015 proved the analogous result for Hr (n,m) when
r > 3 is a fixed integer, which means that m = n

r log n is the
hitting time of connectivity for Hr (n,m).



Introduction

When working with random graphs (or random hypergraphs)
with a given number of edges, Bollobas and Thomason (and
Poole, respectively) could instead work in the binomial
random graph G(n, p)(and Hr (n, p),respectively).

The proofs are due to the fact that the m-th stage Hr (n,m)
can be identified with the uniform random hypergraph from
Hr (n,m), and behaves in a similar fashion when m equals or
is close to the expected number of edges of Hr (n, p).

This approach does not work for linear hypergraphs, as
choosing edges independently is very unlikely to result in a
linear hypergraph.



Introduction

It might be surmised that the threshold of connectivity for
L`
r (n,m) is smaller than the one for Hr (n,m) because of its

constraint on r -graphs.

Let τc = min{m : L`
r (n,m) is connected}.

Let τo = min{m : L`
r (n,m) has no isolated vertices}.

These two properties are certainly monotone increasing
properties, so τc and τo are well-defined in L`

r (n,m).

For any fixed integers r and ` with 2 6 ` 6 r − 1, we will
show that L`

r (n,m) has the same threshold function of
connectivity with Hr (n,m).

And L`
r (n,m) also becomes connected exactly at the moment

when the last isolated vertex disappears.



Some Results

Theorem

For any fixed integers r and ` with 2 6 ` 6 r − 1, w.h.p.,
m = n

r log n is a sharp threshold of connectivity for L`
r (n,m) and

τc = τo for L`
r (n,m).

We also have a corollary about the distribution of the number of
isolated vertices in L`

r (n,m) when m = n
r

(
log n + cn) and

cn → c ∈ R.

Corollary

For any fixed integers r and ` with 2 6 ` 6 r − 1, let
m = n

r

(
log n + cn) with cn → c ∈ R. The number of isolated

vertices in L`
r (n,m) tends in distribution to the Poisson

distribution with mean exp[−c].

We will rely on the enumeration results.



Our Approach

We ever obtained the asymptotic enumeration formula for

Lr (n,m) when m = o(r−3n
3
2 ). In fact, we can apply exactly

the same approach to obtain an asymptotic formula for

|L`r (n,m)| when 3 6 ` 6 r − 1 and m = o(n
`+1
2 ).

It turns out that the proof is a little easier when ` > 3, as only
one type of cluster needs to be considered, compared with
four clusters in the case ` = 2.

Hence, the asymptotic expression when ` > 3 is simpler than
the corresponding expression when ` = 2, so the statements
cannot be combined.



Our Approach

Theorem

Let r = r(n) > 3 and m = m(n) be integers with m = o(r−3n
3
2 ).

Then, as n→∞,

|Lr (n,m)| =

=
Nm

m!
exp

[
− [r ]22[m]2

4n2
− [r ]32(3r2 − 15r + 20)m3

24n4
+ O

( r6m2

n3

)]
.

Theorem

For fixed integers r and ` such that 3 6 ` 6 r − 1, let m = m(n)

be an integer with m = o(n
`+1
2 ). Then, as n→∞,

|L`r (n,m)| =
Nm

m!
exp

[
−

[r ]2` [m]2
2`! n`

+ O
( m2

n`+1

)]
.



Theorem

Let r = r(n) ≥ 3 and let pN = m0 with m0 = o(r−3n
3
2 ). Then, as

n→∞,

P[Hr (n, p) ∈ Lr (n)]

=



exp
[
− [r ]22m

2
0

4n2
+ O

( r6m2
0

n3

)]
,

if m0 = O(r−2n);

exp
[
− [r ]22m

2
0

4n2
+

[r ]32(3r−5)m3
0

6n4
+ O

( log3(r−2n)√
m0

+
r6m2

0
n3

)]
,

if r−2n ≤ m0 = o(r−3n
3
2 ).



Our Approach

We obtain the probability that H contains a given hypergraph as a
subhypergraph.

Theorem

Let r = r(n) ≥ 3, m = m(n) and x = x(n) be integers with

m = o(r−3n
3
2 ) and x = o

(
n3

r6m2

)
. Let X = X (n) be a given

r-graph in L`r (n, x) and H ∈ L`r (n,m) be chosen uniformly at
random. Then, as n→∞,

P[X ⊆ H] =
[m]x
Nx
0

exp

[
[r ]2`x2

2`! n`
+ O

( x

n`
+

m2x

n`+1

)]
.



Proof of Main Results

Let

mL =
n

r
(log n − ω(n)) and mR =

n

r
(log n + ω(n)).

Lemma

Let H be chosen from L`r (n,m) uniformly at random. W.h.p. there
are at most 2 log n isolated vertices in H when m = mL, while
w.h.p. there are no isolated vertices in H when m = mR . Thus,
τo ∈ [mL,mR ].

Lemma

If H is chosen uniformly at random from L`r (n,mL), then w.h.p. H
has at most 2 log n isolated vertices and all remaining vertices are
in a giant component.



Proof of Main Results

Let H be chosen uniformly at random from L`r (n,mL). Assume
that H consists of a connected component and at most 2 log n
isolated vertices. Let V1 denote the collection of these isolated
vertices in H. We add mR −mL random edges to H, which are
denoted by e1, · · · , emR−mL

in sequence. If τo < τc then at least
one edge ej for 1 6 j 6 mR −mL must be added which contains
only isolated vertices.
If HmR−mL

is chosen uniformly at random from L`r (n,mR), then we
have

P[τo < τc ] 6 o(1) +
(
mR −mL

)(2 log n

r

)
mR

N0
exp

[
O
( 1

n`
+

m2
R

n`+1

)]
= o(1) + O

(n2(log n)r+1 log log n

N0

)
= o(1).

We have w.h.p. L`r (n,mR) is connected.



Other Applications

For n ≥ 3, let r = r(n) ≥ 3, m = o(r−3n3/2) and

t = t(n) = min{m, o( n3

r6m2 )}. The expected number of hypertrees
with t edges in an r -uniform linear hypergraph with m edges is

E(|T |) =
(rt − t + 1)t−2r t [m]t

nt−1t!

exp
[ [r ]22t2

4n2
− (r − 1)2[t]2

2n
+ O

( r4t

n2
+

r6m2t

n3

)]
.

The expected number of matchings with t edges .... the expected
number of loose cycles with t edges....



Further Problems

We show the process L`
r (n,m) has the same threshold of

connectivity with Hr (n,m). What about other extremal properties
of the partial Steiner (n, r , `)-systems process? For any fixed
integer g > 4, some researchers applied a natural constrained
random process to typically produce a partial Steiner
(n, 3, 2)-system with (1/6− o(1))n2 edges and girth larger than g .
The process iteratively adds random 3-set subject to the constraint
that the girth remains larger than g . In future work, we will
consider the final size of the partial Steiner (n, r , `)-system process
with some constraints on the girth.
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