Enumeration of linear hypergraphs with given size and its applications

Fang Tian Department of Applied Mathematics Shanghai University of Finance and Economics

December 21, 2022

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Introduction

- Let r and ℓ be given fixed integers such that 2 ≤ ℓ ≤ r − 1. A hypergraph H on vertex set [n] is an r-uniform hypergraph (r-graph for short) if each edge is a set of r vertices.
- An *r-graph* is said to be *linear* if every pair of distinct edges intersect in at most one vertex.
- Linear hypergraphs are the subject of much study, and one reason is that they are a natural generalization of simple graphs.
- An *r*-graph is called a partial Steiner (*n*, *r*, *ℓ*)-system, if every subset of size *ℓ* (*ℓ*-set for short) lies in at most one edge of *H*.
- In particular, partial Steiner (n, r, 2)-systems are linear hypergraphs.
- Let $\mathcal{H}_r(n, m)$ denote the set of *r*-graphs on the vertex set [n] with *m* edges, and let $\mathcal{L}_r(n, m)$ denote the set of all linear hypergraphs in $\mathcal{H}_r(n, m)$.

Introduction

- The uniform hypergraph process $\mathbb{H}_r(n, m)$ is a Markov process with time running through the set $\{0, 1, \dots, \binom{n}{r}\}$. It is the typical random graph process $\mathbb{G}(n, m)$ introduced by Erdős and Rényi when r = 2.
- Similarly, the partial Steiner (n, r, ℓ)-system process begins with no edges on vertex set [n] at time 0, all r-sets arrive one by one according to a uniformly chosen random permutation, and each one is added if and only if it does not overlap any of the previously added edges in ℓ or more vertices.
- In particular, it is the *linear hypergraph process* when $\ell = 2$.
- Let $\mathbb{L}_r^{\ell}(n, m)$ with $2 \leq \ell \leq r 1$ denote the *m*-th stage of the uniform partial Steiner (n, r, ℓ) -system process, and $\mathbb{L}_r^2(n, m)$ is also denoted as $\mathbb{L}_r(n, m)$.

- The hitting time of connectivity is a classic problem which has been extensively studied in the theory of random graph processes.
- Bollobás and Thomason in 1985 proved that, with probability approaching to 1 when $n \to \infty$ (*w.h.p.* for short), $m = \frac{n}{2} \log n$ is a sharp threshold of connectivity for $\mathbb{G}(n, m)$ and the very edge which links the last isolated vertex with another vertex makes the graph connected.
- Poole in 2015 proved the analogous result for $\mathbb{H}_r(n, m)$ when $r \ge 3$ is a fixed integer, which means that $m = \frac{n}{r} \log n$ is the hitting time of connectivity for $\mathbb{H}_r(n, m)$.

- When working with random graphs (or random hypergraphs) with a given number of edges, Bollobas and Thomason (and Poole, respectively) could instead work in the binomial random graph G(n, p)(and ℍ_r(n, p),respectively).
- The proofs are due to the fact that the *m*-th stage $\mathbb{H}_r(n, m)$ can be identified with the uniform random hypergraph from $\mathcal{H}_r(n, m)$, and behaves in a similar fashion when *m* equals or is close to the expected number of edges of $\mathbb{H}_r(n, p)$.
- This approach does not work for linear hypergraphs, as choosing edges independently is very unlikely to result in a linear hypergraph.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Introduction

- It might be surmised that the threshold of connectivity for $\mathbb{L}_r^{\ell}(n, m)$ is smaller than the one for $\mathbb{H}_r(n, m)$ because of its constraint on *r*-graphs.
- Let $\tau_c = \min\{m : \mathbb{L}_r^{\ell}(n, m) \text{ is connected}\}.$
- Let $\tau_o = \min\{m : \mathbb{L}_r^{\ell}(n, m) \text{ has no isolated vertices}\}.$
- These two properties are certainly monotone increasing properties, so τ_c and τ_o are well-defined in $\mathbb{L}_r^{\ell}(n, m)$.
- For any fixed integers r and ℓ with $2 \leq \ell \leq r 1$, we will show that $\mathbb{L}^{\ell}_{r}(n, m)$ has the same threshold function of connectivity with $\mathbb{H}_{r}(n, m)$.
- And $\mathbb{L}_r^{\ell}(n, m)$ also becomes connected exactly at the moment when the last isolated vertex disappears.

Theorem

For any fixed integers r and ℓ with $2 \leq \ell \leq r - 1$, w.h.p., $m = \frac{n}{r} \log n$ is a sharp threshold of connectivity for $\mathbb{L}_{r}^{\ell}(n, m)$ and $\tau_{c} = \tau_{o}$ for $\mathbb{L}_{r}^{\ell}(n, m)$.

We also have a corollary about the distribution of the number of isolated vertices in $\mathbb{L}_{r}^{\ell}(n, m)$ when $m = \frac{n}{r}(\log n + c_{n})$ and $c_{n} \to c \in \mathbb{R}$.

Corollary

For any fixed integers r and ℓ with $2 \leq \ell \leq r - 1$, let $m = \frac{n}{r} (\log n + c_n)$ with $c_n \to c \in \mathbb{R}$. The number of isolated vertices in $\mathbb{L}_r^{\ell}(n, m)$ tends in distribution to the Poisson distribution with mean $\exp[-c]$.

We will rely on the enumeration results.

- We ever obtained the asymptotic enumeration formula for $\mathcal{L}_r(n,m)$ when $m = o(r^{-3}n^{\frac{3}{2}})$. In fact, we can apply exactly the same approach to obtain an asymptotic formula for $|\mathcal{L}_r^{\ell}(n,m)|$ when $3 \leq \ell \leq r-1$ and $m = o(n^{\frac{\ell+1}{2}})$.
- It turns out that the proof is a little easier when l ≥ 3, as only one type of cluster needs to be considered, compared with four clusters in the case l = 2.
- Hence, the asymptotic expression when $\ell \ge 3$ is simpler than the corresponding expression when $\ell = 2$, so the statements cannot be combined.

Theorem

Let $r = r(n) \ge 3$ and m = m(n) be integers with $m = o(r^{-3}n^{\frac{3}{2}})$. Then, as $n \to \infty$,

$$\begin{aligned} |\mathcal{L}_r(n,m)| &= \\ &= \frac{N^m}{m!} \exp\left[-\frac{[r]_2^2[m]_2}{4n^2} - \frac{[r]_2^3(3r^2 - 15r + 20)m^3}{24n^4} + O\left(\frac{r^6m^2}{n^3}\right)\right]. \end{aligned}$$

Theorem

For fixed integers r and ℓ such that $3 \leq \ell \leq r-1$, let m = m(n) be an integer with $m = o(n^{\frac{\ell+1}{2}})$. Then, as $n \to \infty$,

$$|\mathcal{L}_{r}^{\ell}(n,m)| = \frac{N^{m}}{m!} \exp\left[-\frac{[r]_{\ell}^{2}[m]_{2}}{2\ell! n^{\ell}} + O\left(\frac{m^{2}}{n^{\ell+1}}\right)\right].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三里 ・のへで

Theorem

Let $r = r(n) \ge 3$ and let $pN = m_0$ with $m_0 = o(r^{-3}n^{\frac{3}{2}})$. Then, as $n \to \infty$,

$$\mathbb{P}[H_r(n,p) \in \mathcal{L}_r(n)] = \begin{cases} \exp\left[-\frac{[r]_2^2 m_0^2}{4n^2} + O\left(\frac{r^6 m_0^2}{n^3}\right)\right], \\ if m_0 = O(r^{-2}n); \\ \exp\left[-\frac{[r]_2^2 m_0^2}{4n^2} + \frac{[r]_2^3 (3r-5)m_0^3}{6n^4} + O\left(\frac{\log^3(r^{-2}n)}{\sqrt{m_0}} + \frac{r^6 m_0^2}{n^3}\right)\right], \\ if r^{-2}n \le m_0 = O(r^{-3}n^{\frac{3}{2}}). \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We obtain the probability that H contains a given hypergraph as a subhypergraph.

Theorem

Let
$$r = r(n) \ge 3$$
, $m = m(n)$ and $x = x(n)$ be integers with $m = o(r^{-3}n^{\frac{3}{2}})$ and $x = o(\frac{n^3}{r^6m^2})$. Let $X = X(n)$ be a given r -graph in $\mathcal{L}_r^{\ell}(n, x)$ and $H \in \mathcal{L}_r^{\ell}(n, m)$ be chosen uniformly at random. Then, as $n \to \infty$,

$$\mathbb{P}[X \subseteq H] = \frac{[m]_x}{N_0^x} \exp\left[\frac{[r]_\ell^2 x^2}{2\ell! n^\ell} + O\left(\frac{x}{n^\ell} + \frac{m^2 x}{n^{\ell+1}}\right)\right].$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Proof of Main Results

Let

$$m_L = \frac{n}{r}(\log n - \omega(n))$$
 and $m_R = \frac{n}{r}(\log n + \omega(n)).$

Lemma

Let H be chosen from $\mathcal{L}_{r}^{\ell}(n, m)$ uniformly at random. W.h.p. there are at most 2 log n isolated vertices in H when $m = m_{L}$, while w.h.p. there are no isolated vertices in H when $m = m_{R}$. Thus, $\tau_{o} \in [m_{L}, m_{R}]$.

Lemma

If H is chosen uniformly at random from $\mathcal{L}_{r}^{\ell}(n, m_{L})$, then w.h.p. H has at most $2 \log n$ isolated vertices and all remaining vertices are in a giant component.

Proof of Main Results

Let *H* be chosen uniformly at random from $\mathcal{L}_r^{\ell}(n, m_L)$. Assume that *H* consists of a connected component and at most $2 \log n$ isolated vertices. Let V_1 denote the collection of these isolated vertices in *H*. We add $m_R - m_L$ random edges to *H*, which are denoted by $e_1, \dots, e_{m_R-m_L}$ in sequence. If $\tau_o < \tau_c$ then at least one edge e_j for $1 \leq j \leq m_R - m_L$ must be added which contains only isolated vertices.

If $H_{m_R-m_L}$ is chosen uniformly at random from $\mathcal{L}^\ell_r(n,m_R)$, then we have

$$\mathbb{P}[\tau_o < \tau_c] \leq o(1) + (m_R - m_L) \binom{2 \log n}{r} \frac{m_R}{N_0} \exp\left[O\left(\frac{1}{n^\ell} + \frac{m_R^2}{n^{\ell+1}}\right)\right]$$
$$= o(1) + O\left(\frac{n^2(\log n)^{r+1}\log\log n}{N_0}\right)$$
$$= o(1).$$

(日本本語を本書を本書を入事)の()

We have w.h.p. $\mathcal{L}_r^{\ell}(n, m_R)$ is connected.

For $n \ge 3$, let $r = r(n) \ge 3$, $m = o(r^{-3}n^{3/2})$ and $t = t(n) = \min\{m, o(\frac{n^3}{r^6m^2})\}$. The expected number of hypertrees with t edges in an r-uniform linear hypergraph with m edges is

$$\mathbb{E}(|T|) = \frac{(rt - t + 1)^{t - 2} r^t [m]_t}{n^{t - 1} t!} \\ \exp\left[\frac{[r]_2^2 t^2}{4n^2} - \frac{(r - 1)^2 [t]_2}{2n} + O\left(\frac{r^4 t}{n^2} + \frac{r^6 m^2 t}{n^3}\right)\right].$$

The expected number of matchings with t edges the expected number of loose cycles with t edges....

(日) (日) (日) (日) (日) (日) (日) (日) (日)

We show the process $\mathbb{L}_r^{\ell}(n, m)$ has the same threshold of connectivity with $\mathbb{H}_r(n, m)$. What about other extremal properties of the partial Steiner (n, r, ℓ) -systems process? For any fixed integer $g \ge 4$, some researchers applied a natural constrained random process to typically produce a partial Steiner (n, 3, 2)-system with $(1/6 - o(1))n^2$ edges and girth larger than g. The process iteratively adds random 3-set subject to the constraint that the girth remains larger than g. In future work, we will consider the final size of the partial Steiner (n, r, ℓ) -system process with some constraints on the girth.

Thank You